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CALE MODEL

Numerical simulations presented in this work were performed using the CALE computer
program (ref. 1). CALE is a two-dimensional and three-dimensional axial symmetric high rate finite
difference computer program based on arbitrary Lagrangian-Eulerian formulation of the governing
equations.

The geometry of two problems under the consideration is shown in figure 1. As shown in the
figure, upon initiation of the high explosive charge, rapid expansion of high-pressure high-velocity
detonation products results in high-strain high-strain-rate dilation of the hardened steel shell, ac-
companied by the implosion of the copper shaped charge liner that produces a high-speed metal
jet moving along the charge's axis of symmetry z.

In addition to specification of the problem geometry and initial and boundary conditions,
equations of states and constitutive equations for all materials have to be specified before the
solution procedure can be initiated. The explosive was modeled using the Jones-Wilkins-Lee-
Baker equation of state employing a set of parameters (ref. 2) resulting from thermo-chemical
equilibrium analyses of detonation products with the JAGUAR code. The hydrodynamic responses
of the steel shell and the copper liner were modeled using a standard linear polynomial approxima-
tion usually employed for metals. The constitutive behavior of these metals was modeled using the
Steinberg-Guinan yield-strength model and the von Mises yielding criterion. A standard set of
parameters available from Tipton (ref. 3) was employed in the analyses.

Since the extent of dilation of the rapidly expanding steel shell is limited by its strength, at
some point the shell ruptures generating a spray of steel fragments moving with trajectories at
angles 0 with z -axis. Accordingly, the principal topic of this work will be a numerical model for
analytical description of parameters of this spray as functions of the spray angle 0. In typical
explosive fragmentation tests (arena tests), the tested munitions are positioned at the origin of the
reference polar coordinate system, and surrounded with series of velocity-measuring screens and
fragment-catching witness panels, all at significant distances from the warhead. Accordingly, the
fragmentation characteristics are assessed as functions of polar angles 0' identifying angular
positions of these measuring devices. Assuming that the fragment trajectory angles 0 do not
change with time (that is the lateral drift of fragments due to air resistance is small) and that defini-
tions of angles 8 and 0' are approximately identical, the developed model enables prediction of
crucial characteristics of explosive fragmenting munitions including the number of fragments, the
fragment size distribution, and the average fragment velocities.

THE NATURAL FRAGMENTATION MODEL

The developed natural fragmentation model is based on the Mott's theory of break-up of
cylindrical "ring-bombs" (ref. 4), in which the average length of the resulting circumferential frag-
ments is a function of the radius and velocity of the ring at the moment of break-up, and the me-
chanical properties of the metal. Following Mott and Linfoot (ref. 5), the "random variations" in
fragment sizes are accounted through the following fragment distribution relationship

N(m) = Noe-N• 
(1)



In equation 1, N(m) represents total number of fragments of mass greater than m, u is defined as

one half of the average fragment mass, No = M / l, and M is the total mass.

In attempting to evaluate the distribution of fragment sizes occurring in the dynamic fragmen-
tation of expanding metal rings, Mott (ref. 4) introduced an idealized model in which the average
circumferential fragment lengths are not random but determined by the interaction of stress release
waves originating from instantaneous fractures in the body. A schematic of the Mott's model is
shown in figure 2a. Assuming that a fracture in the ring is supposed to have occurred first at A1
and that stress release waves have traveled to points B1 and B1, further fractures can no longer
take place in regions A1B1 and AB 1 . On the other hand, in the regions BIB 2 and BjB_ the plastic
strain is increasing, which increases the probability of fractures at any point in these regions, espe-
cially at points B 1, B2, B1, and B7. Thus, according to Mott's theory the average size of fragments is
determined by the rate at which stress relieved regions A1 B1 and A1B1 spread through the plasti-
cally expanding ring.

At the moment of fracture, let r be the radius of the ring and V be the velocity with which
the shell is moving outwards. Then, according to Mott (ref, 4), the average circumferential length of
the resulting fragments is

0= 2P, "12 r_ (2)

In equation 2, p and PF denote the density and the strength, respectively; and / is a semi-
empirical statistical constant determining the dynamic fracture properties of the material.

Given that the shape and the average fragment lengths are know, the idealized averaged
fragment mass can be calculated. For example, assuming approximately cubic-shaped fragments,

,u takes the following form

13 (3)

A schematic for the newly developed technique integrating CALE-code analyses with Mott's
fragmentation model is shown in figure 2b. The details of this technique are as follows. For com-
putational purposes, the shell is discretized into a finite number of short "ring" segments, N. For
each discrete ring element j, uniform field variables are assumed. Accordingly, the masses, the

velocities and radii of ring segments j are defined by the mass averages of the respective

parameters:

m = Zm, (4)

Zvimi(5

2(5)
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lRimi
r ___= ___ 1 (6)

rm. sin IO

EO j- ---- _61< e,<j + _ (7)
2N 2N

In equations 4 through 6, mi, vi, and Ri denote the mass, the velocity, and the radial coor-
dinate of the i - th computational cell from the CALE-code generated data. Li denotes a number

of computational cells contained in the j-th ring segment. 01 denotes the E -angle that corre-

sponds to the j - th ring segment given by

(8)

For each computational cell i, the velocity vi and the 0 -angle ®i are calculated respectively by

V V+V72(9)

and

0, = aretan A' (10)
V.i

In equations 9 and 10, Vzi and vRi denote the axial and the radial velocity components from
the CALE-code generated data.

Given that the velocities and the radii of ring segments j are determined through equations
5 and 6, the resulting fragment size distributions can be calculated through the following relation-
ships

Ns(m) = Noje (11)

j= 2(P,1 2 (J (12)

/j
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THE NATURAL FRAGMENTATION ANALYSES: THE RESULTS

The fundamental assumption of all fragmentation analyses presented in this work was that
the fragmentation occurs instantly throughout the entire body of the shell. Following Mott's critical
fracture strain concept (ref. 4) and assuming that for given shell geometry and materials, the shell
fragmentation time is a function of the cumulative dilatational plastic strain in the shell, the shell
fragmentation time can be conveniently expressed in terms of the global shell dilatational proper-
ties. Given that in a typical fragmentation munition device the explosive is tightly confined inside
the shell, the cumulative strains of the expanding explosive and the surrounding shell are nearly
proportional. Accordingly, the critical fracture strain at the moment of the shell break-up may be
conveniently measured in terms of the high explosive detonation products volume expansions,
V/V 0 . The developed technique had been validated employing experimental data from the cylin-

drical-shell charge shown in figure la. As shown in figures 3 through 7, this relatively simplistic
model remarkably accurately predicts the fragment spray experimental data.

Figures 3 and 4 show the effect of the shell fragmentation time on the fragment spray mass
and velocity distribution functions. The seemingly significant disagreement between the experi-
mental velocities and the analyses for 0•<15 deg is due to deliberate omission of the shaped
charge jet data from the fragmentation analyses; mainly because of the minimal contribution to the
fragment-spray lethality. Accordingly, the copper shaped charge jet had been neglected in all
fragmentation analyses, although included in the CALE model in order to maintain proper explosive
confinement parameters. As shown in figures 3 and 4, varying the shell fragmentation time from
approximately 5 R.s (at which the detonation products had expanded approximately 1.8 times its
original volume, V/V 0 = 1.8) to approximately 30 l±s (V/V 0 = 31.9), the changes in the fragment
spray angles 0 were rather small, while the fragment spray velocities were affected rather signifi-
cantly. As shown in figure 4, delaying the moment of the shell break-up had resulted in -consider-
able increases of the fragment spray velocities, apparently due to the prolonged "pressurized"
interaction with expanding detonation products that increased the total momentum transferred to
the shell.

As shown in figures 3 and 4, the analyses reasonably accurately reproduce overall shapes
of the fragment spray mass and velocity distribution curves, including the principal (that is the
maximum lethality) peak at 0 z 90 deg. The disagreement between the analyses and the 45-deg
and the 60-deg fragment spray mass spikes is due to fragments from the shaped charge liner-
retaining ring, which had not been included in the CALE model, mainly because of the minimal
effect on the overall fragment lethality.

Figures 5 and 6 show plots of the number of fragments in the fragment spray as functions of
the fragment size m/tz, the spray angle E, the shell fragmentation time, and the dynamic fracture
parameter y. As shown in the figures, increases in the parameter y had resulted in increases of

the number of fragments N, both for the N-rm/p and the N-E relationships. These results are

in agreement with the Mott's theory (ref. 4), according to which the parameter y defines the prob-
ability of fracture in the plastically expanding shell determining the number of breaks in the circum-
ferential direction.
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As shown in figure 5, a series of values of the parameter y were obtained by fitting the
analytical fragment size distribution functions, equation 11, with the experimental data, all analyses
repeated for each assumed shell fragmentation time. As shown in the figure, nearly identical frag-
ment distribution curves had resulted from both the 8 lis (V/V 0 = 3.0) and the 20 4is (V/V 0 = 14.1)
fragmentation times. The accepted shell fragmentation time was determined from the high-speed
photographic data of Pearson (ref. 6). Following Pearson (ref. 6), the fragmentation of shells with
cylindrical geometries (similar to that considered in this work) occurs approximately at three volume
expansions, the fragmentation being defined as the instant at which the detonation products first
appear as they emanate from the fractures in the shell. Accordingly, the accepted shell fragmenta-
tion was approximately 8 4s (V / 0 = 3.0) and the value of y = 12 was selected for all further analy-

ses.

Figure 7 shows a plot of the number of fragments with mass greater than 3 grains versus the
spray angle E, which is a principal lethality parameter of the fragment spray of the munition. The
disagreement between the analyses and small spikes at 45 deg and 60 deg is due to fragments
from the shaped charge liner-retaining ring, which had not been included in the CALE model,
mainly because of the minimal effect on the overall fragment lethality. The disagreement between
the analyses and the spike at 155 deg is due to fragments from a rotating band that had not been
included in the CALE model. As shown in the figure, given a relatively crude assumption of the
shell fragmentation time, the overall agreement between the analyses and the experimental data is
rather remarkable.

PREFORMED FRAGMENTATION MODELING

Figures 8 and 9 show plots of fragment velocities and number of fragments versus the spray
angle E for a preformed fragment spray generated by the spherical-shell explosive charge shown
in figure lb. As shown in figure 8, the spherical-shell charge produces approximately uniform
fragment spray with fragment velocities increasing with the delayed shell break-up time. Figure 9
shows a plot of number of fragments with approximately 3-grain fragment sizes versus the spray
angle E. Assuming an ideally uniform fragment size distribution, the number of fragments in the
preformed-fragment spray is

Ni = m- (14)

where p 0 is one half of the mass of the preformed fragment and mj is the mass of the j- th ring

segment.

SUMMARY

New methodology for simulating performance of explosive fragmentation munitions pre-
sented in this work integrates three-dimensional axisymmetric hydrocode analyses with analytical
fragmentation modeling. The newly developed computational technique is applied to both the
natural and preformed explosive fragmentation munitions problems. The developed model re-
markably accurately predicts the fragment spray experimental data.
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